Elevated cAMP increases aquaporin-3 plasma membrane diffusion.

نویسندگان

  • Saw Marlar
  • Eva C Arnspang
  • Jennifer S Koffman
  • Else-Merete Løcke
  • Birgitte M Christensen
  • Lene N Nejsum
چکیده

Regulated urine concentration takes place in the renal collecting duct upon arginine vasopressin (AVP) stimulation, where subapical vesicles containing aquaporin-2 (AQP2) are inserted into the apical membrane instantly increasing water reabsorption and urine concentration. The reabsorped water exits via basolateral AQP3 and AQP4. Upon long-term stimulation with AVP or during thirst, expression levels of both AQP2 and AQP3 are increased; however, there is so far no evidence for short-term AVP regulation of AQP3 or AQP4. To facilitate the increase in transepithelial water transport, AQP3 may be short-term regulated via changes in protein-protein interactions, incorporation into lipid rafts, and/or changes in steady-state turnover, which could result in changes in the diffusion behavior of AQP3. Thus we measured AQP3 diffusion coefficients upon stimulation with the AVP mimic forskolin to reveal if AQP3 could be short-term regulated by AVP. k-Space image correlation spectroscopy (kICS) analysis of time-lapse image sequences of basolateral enhanced green fluorescent protein-tagged AQP3 (AQP3-EGFP) revealed that the forskolin-mediated elevation of cAMP increased the diffusion coefficient by 58% from 0.0147 ± 0.0082 μm(2)/s (control) to 0.0232 ± 0.0085 μm(2)/s (forskolin, P < 0.05). Quantum dot-conjugated antibody labeling also revealed a significant increase in AQP3 diffusion upon forskolin treatment by 44% [0.0104 ± 0.0040 μm(2)/s (control) vs. 0.0150 ± 0.0016 μm(2)/s (forskolin, P < 0.05)]. Immunoelectron microscopy showed no obvious difference in AQP3-EGFP expression levels or localization in the plasma membrane upon forskolin stimulation. Thus AQP3-EGFP diffusion is altered upon increased cAMP, which may correspond to basolateral adaptations in response to the increased apical water readsorption.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Opposing Effects of cAMP and T259 Phosphorylation on Plasma Membrane Diffusion of the Water Channel Aquaporin-5 in Madin-Darby Canine Kidney Cells

Aquaporin-5 (AQP5) facilitates passive water transport in glandular epithelia in response to secretory stimuli via intracellular pathways involving calcium release, cAMP and protein kinase A (PKA). In epithelial plasma membranes, AQP5 may be acutely regulated to facilitate water transport in response to physiological stimuli by changes in protein modifications, interactions with proteins and li...

متن کامل

The movement of water and cryoprotectants across the plasma membrane of mammalian oocytes and embryos and its relevance to vitrification

The permeability of the plasma membrane to water and cryoprotectants is one of the most important factors for determining suitable conditions for vitrification of mammalian oocytes and embryos. In mouse oocytes and early stage embryos, water and cryoprotectants move slowly, principally by simple diffusion. In contrast, in morulae (and probably blastocysts), water, glycerol, and ethylene glycero...

متن کامل

Permeability of the plasma membrane to water and cryoprotectants in mammalian oocytes and embryos: Its relevance to vitrification

The permeability of the plasma membrane to water and cryoprotectants is one of the important factors for determining the suitable condition for the vitrification of mammalian oocytes and embryos. Water and cryoprotectants move slowly through oocytes and early embryos, principally by simple diffusion, in the mouse, bovine, pig, and human. In contrast, water, glycerol, and ethylene glycerol move ...

متن کامل

Regulation of aquaporin-2 trafficking by vasopressin in the renal collecting duct. Roles of ryanodine-sensitive Ca2+ stores and calmodulin.

In the renal collecting duct, vasopressin increases osmotic water permeability (P(f)) by triggering trafficking of aquaporin-2 vesicles to the apical plasma membrane. We investigated the role of vasopressin-induced intracellular Ca(2+) mobilization in this process. In isolated inner medullary collecting ducts (IMCDs), vasopressin (0.1 nm) and 8-(4-chlorophenylthio)-cAMP (0.1 mm) elicited marked...

متن کامل

AQP2 Plasma Membrane Diffusion Is Altered by the Degree of AQP2-S256 Phosphorylation

Fine tuning of urine concentration occurs in the renal collecting duct in response to circulating levels of arginine vasopressin (AVP). AVP stimulates intracellular cAMP production, which mediates exocytosis of sub-apical vesicles containing the water channel aquaporin-2 (AQP2). Protein Kinase A (PKA) phosphorylates AQP2 on serine-256 (S256), which triggers plasma membrane accumulation of AQP2....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Cell physiology

دوره 306 6  شماره 

صفحات  -

تاریخ انتشار 2014